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Abstract

This paper extends the Euclidean vector product to a general inner product space with the inner
product defined by a general non-degenerate symmetric bilinear form which will be represented by
a 3 x 3 invertible symmetric matrix. From there, the usual definitions of scalar and vector triple and
quadruple products are extended to this general inner product space and known results of Binet,

Cauchy, Jacobi and Lagrange are generalised.
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1 Introduction

The Euclidean vector product of two vectors v = (v1,v2,v3) and w = (w1, wa,ws) in the three-

dimensional vector space R? over the set of real numbers R is defined as the vector
<1), w> =V XW= (’1)211)3 — V3W2,V3W1 — V1W3, V1W2 — ’Ugwl) .

This definition was introduced in component form by Lagrange in [19] to study the tetrahedron in
three dimensions, and then formally presented by Gibbs in [11] as well as Heaviside [14, pp. 132-305]
to simplify the works of Clifford [6] and Hamilton [12] on quaternion products.

In this paper, we aim to extend this definition to a general inner product space F3 over a general
field F not of characteristic 2, where the inner product on this space is given by a non-degenerate
symmetric bilinear form on F? which can be represented by a 3 x 3 invertible symmetric matrix B. We
will call such an inner product the B-scalar product, and we denote them in this paper for vectors
u and v in F3 by [u, v] g Given the above definition of the Euclidean vector product, now over F rather

than R, we can then define the B-vector product as
(v,w) g = (v,w)adj B

where adj is the operator denoting the adjugate matrix.

From this, we can the define for vectors u, v, w and z in F3:



the B-scalar triple product

[uvvvw]B = [u7 <v7w>B]B

e the B-vector triple product

<u,v,w)B = <u’ <v7w>B>B

the B-scalar quadruple product

[u, v;w, 2] = [(u, ), <wa$>B]B

and the B-vector quadruple product
<’LL, v w, :E>B = <<U, U>B ) <w’ :E>B>B :

These four definitions extend the usual definitions of the scalar and vector triple and quadruple
products from [11] to the general inner product space prescribed above. From this, we can generalise
known results of Binet [2], Cauchy [4], Jacobi [16] and Lagrange [19] to this general inner product space
and we can also rely on [21] for additional interesting results related to these triple and quadruple
products.

We will conclude this paper by briefly discussing the scope of applications of the extension of vector

products to general inner product spaces.

2 Symmetric bilinear forms and general inner product spaces

Consider the three-dimensional vector space F3 over a general field F not of characteristic 2. The
objects of F? are vectors, which we write in row form, like (z,v, 2).

A 3 x 3 symmetric matrix

al bg b2
B=|b; ay b (1)
b2 bl as

determines a symmetric bilinear form on F? defined and denoted by
[v,w]z = vBw’

and under such a symmetric bilinear form F? then becomes an inner product space. We say then
that the matrix B represents the symmetric bilinear form on F? and thus by extension the inner
product space itself. We may call this kind of operation the B-scalar product, where in the case
that B is the 3 x 3 identity matrix, it corresponds to the usual Euclidean scalar product on two
vectors [11, pp. 55-57].

The symmetric bilinear form on F? is non-degenerate if and only if for all vectors v in F? we have

that [v,w]z = 0 implies w = 0, where 0 is the zero vector in F?; this is equivalent to the condition



that the matrix B representing the symmetric bilinear form is invertible. We will assume that the
symmetric bilinear form is non-degenerate throught this paper.

We can then define the B-quadratic form on the inner product space F3 equipped with the
B-scalar product by

Qp (v) = [v,v]p

for all vectors v, and we say that a vector v is a B-null vector if Qp (v) = 0. We then have for all

vectors v and w in F? and a scalar A in F that

QB (/\'U) = )\2QB (1))
which consequently means that
@p(-v) = QB (v).

We also have that
Qp (v+w) =Qp (v) +Qp () +2[v,w]yz

and

Qp(v—w) =Qp )+ @ (w) - 2[v,wlg

so that we may express the symmetric bilinear form in terms of its associated quadratic form through

the polarisation formulas [13]

Qpv+w)-Qp(v) -@pw) _Qp()+Epw) - Ep[-w)
2 2 ’

[U,’U)]B =

Two vectors v and w in F? are orthogonal with respect to the B-scalar product if [v, w] =0
and we denote this relationship by v | g w; by the above polarisation formulas this is equivalent to
the condition that

Qpv+w)=Qp(v)+Qp(w)=Qp(v—w).

3 Vector product on inner product space

Given two vectors v1 = (1, ¥1,21) and vy = (z2,¥2,22) in an inner product space F? equipped with

the usual Euclidean scalar product, the Euclidean vector product [11, pp. 60-62] of v; and v is
(v1,v2) = v1 X v2 = (Y122 — Y221, T221 — T122, T1Y2 — T2Y1) -

We now extend this notion to the case of a general inner product space.
U1
Let v1, vo and v3 be vectors in V3, and let M = | vy | be the matrix with these vectors as rows.

U3



We define the adjugate of M (see [10, p. 82] and [25, p. 232]) to be the matrix

T
<'U2, U3>

<U37 U1>

(v1,v2)

adj M =

If the 3 x 3 matrix M is invertible, then the adjugate is characterized by the equation

1

djM =M1
(det M) ™

One can then show in this case that the two properties
adj (M N) = (adj N) (adj M)

and
M (adj M) = (adj M) M = (det M) I3

hold, where I3 is the 3 x 3 identity matrix, and in fact they hold more generally for arbitrary 3 x 3

matrices M and N. In the invertible case we have also that

adj (adj M) = det (adjM) (adj M)™*
= det ((det M) M) ((det M) M)
= (det M)® (det M) (det M) ™" M
— (det M) M.

-1

For the fixed symmetric matrix B from (1), we write and denote

azaz — b3 biby —azbs  bibs — azbe a1 B
adj B = b1b2 — agbg ajas — b% b2b3 - albl - ,63 (6%)
bibs — asbe babs —a1by  ajaz — b3 By B

B2
B - (2)

as

For the inner product space F? equipped with the B-scalar product, define the B-vector product

of vectors v; and vy to be the vector

(v1,v2) g = (v1,v2) adj B

where (v1,vs) is the Euclidean vector product of v; and vy from above. The motivation for this

definition is given by the following theorem, based on a similar result given in [7].

Theorem 1 (Adjugate vector product theorem) Let vy, v and vs be vectors in V3, and let

U1
M = V2

U3

be the matrix with these vectors as rows. Then for any 3 X 3 invertible symmetric matriz



B, we have that

T
(v2,v3)
adj (MB) = | (vs,v1)p
<'U1, v2>B
Proof. By the definition of adjugate matrix, adj M is
T
<'U2, U3>
adj M = | (vs,v1)
(v1,v2)
Since adj (M B) = adj Badj M and B is symmetric, we get
<’U2, U3>
(adj (MB))" = (adjM)" adj B = | (vs,v;) | adj B
(v1,v2)
(vg,v3)adj B (v2,v3) g
= | (vs,v)adjB | = [ (vs,v1)p
(v1,v9)adj B (v1,v2) g

Now take the matrix transpose on both sides to get the required result. m
The usual linearity and anti-symmetric properties of the Euclidean vector product (shown in [1,
pp. 142-143]) will hold for B-vector products.

3.1 Scalar triple products over general inner product spaces

Given the inner product space F? equipped with the usual Euclidean scalar product, the Euclidean

scalar triple product of three vectors v1, va and vz in F? is defined in [11, pp. 68-71] as

U1
[v1, v2, v3] = [v1, (v, v3)] = det | vy

U3

We can generalise this definition for a general inner product space F? equipped with the B-scalar

product. So, we now define the B-scalar triple product of three vectors vi,vs and v in F? to be

[Ula v2, U3]B = [Ul, <U27U3>B]B .

The following result allows for the evaluation of the B-scalar triple product in terms of determinants,
which generalises well-known formulas relating Euclidean scalar products and determinants, such as
in [21, p. 104].

U1
Theorem 2 (Generalised scalar triple product theorem) Let M = | vy | for vectors vi, vy

U3



and vz in an inner product space F3 equipped with the B-scalar product. Then, we have that
[v1,v2,v3] 5 = (det B) (det M) .

Proof. From the definitions of the B-scalar product, B-vector product and the B-scalar triple product,

we have

[v1,v2,v3]5 = v1B ((v2,v3)adjB)"
v1 (B adj B) (va, v3>T

As adj B = (det B) B~! and [v1,v2,v3] = det M by the definition of the Euclidean scalar triple product,

we get

[v1,v2,v3] g = (det B) vy (va, 03>T
= (det B) [v1,v2,v3]
= (det B) (det M)

as required. m

We can now relate B-vector products to orthogonality with respect to the B-scalar product.

Corollary 3 The vectors v and w in V? are both orthogonal to (v,w) 5 with respect to the B-scalar
product, i.e.

vilp(wxpw) and w Llp(vxpw).
Proof. By the Generalised scalar triple product theorem,

[v, (v,w)glg = [v,v,w]g = (det B)det | v | =0.

w

Similarly, [w,v, w]; = 0 and so we have the desired result by definition of orthogonality with respect
to the B-scalar product. m

The above corollary generalise the well-known fact that the Euclidean vector product gives a vector
perpendicular to the two operands in the Euclidean sense to a general inner product space.

We could also rearrange the ordering of B-scalar triple products as follows.

Corollary 4 For vectors vi, vy and v in V3,

[Ulav2av3]B - [’UQ,'Ug,’Ul]B == [’1)3,'1)1,'1)2]3

== - [U17U37U2]B - - [02701703}3 - - [U3vv27U1]B .

Proof. This follows from the corresponding relations for [vy, ve, v3], or equivalently the transformation

properties of the determinant upon permutation of rows. m



3.2 Vector triple products over general inner product spaces

Recall that the Euclidean vector triple product of three vectors vy, va and v3 in the inner product

space 3 equipped with the usual Euclidean scalar product (from [11, pp. 71-75]) is

(v1,v2,v3) = (v1, (v2,v3)) -

The B-vector triple product of the same vectors on a more general inner product space equipped

with the B-scalar product is similarly defined to be

(v1,v2,v3) g = (v1, (V2,v3)g) 5 -

We can evaluate this by generalising a classical result of Lagrange [19] from the Euclidean vector triple
product to B-vector triple products, following the general lines of argument of [5] and [24, pp. 28-29];

the proof is surprisingly complicated.

Theorem 5 (Generalised Lagrange formula) For vectors vi, va and vs in the inner product space

F3 equipped with the B-scalar product,
(v, v2,v3) g = (det B) [[v1, vs] g v2 — [v1, v2] g v3] -

Proof. Let w = (v1,v2,v3). If vy and v are linearly dependent, then (vy,v3); = 0 and thus
(vi,v2,v3) 5 = 0. Furthermore, we are able to write one of them as a scalar multiple of the other,
which implies that

[v1,v3) g v2 — [v1,v2] gU3 =0

and thus the required result holds. So we may suppose that v and v3 are linearly independent. From

Corollary 3, (v2,v3) 5 Lp w and thus

(%) J_B <212,213>B and V3 J_B (1)2,1)3>B.

As w is parallel to vy and vs, we can deduce that w is equal to some linear combination of v9 and vs.

So, for some scalars o and 3 in F, we have
w = auy + Pus.

Furthermore, since v; Lp w, the definition of orthogonality with respect to the B-scalar product
implies that

[w,v1] 5 = a[v1,v2] 5 + B [v1,v3] 5 = 0.

This equality is true precisely when a = A[vy,v3|z and § = —\ v, v2] 5, for some non-zero scalar A
in F. Hence,

w = A[v1,v3]gv2 — [v1,v2] g v3] -

To proceed, we first want to prove that A is independent of the choices v1, vo and v3, so that we can

compute w for arbitrary vy, vo and vs. First, suppose that A is dependent on vy, v and wvs, so that



we may define A = A (v, va,v3). Given another vector d in F3, we have

[w7 d]B =A (U17U27U3) [[’01703]3 [U27 d]B - [U17U2]B [U37d}B] : (3)

Directly substituting the definition of w, we use the Generalised scalar triple product theorem to

obtain

[wv d]B = <U17 <U2’U3>B>B ‘Bd= [Ul’ <<U27U3>B ) d>B]B = - [Ul7 <d7 U27U3>B]B :

Based on our calculations of w, we then deduce that

— [v1, (d, v, U3>B]B = —[v1,A(d,v2,v3)[[d,v3] g v2 — [d,v2] 5 vg]]B (4)

= A (d7 7}277}3) [[U17U3]B [U27 d]B - [U17U2]B [U?”d]B] .

Comparing (3) and (4), we deduce that X (vi, v, v3) = A(d, v2,v3) and hence A must be indepen-
dent of the choice of v;. With this, now suppose instead that A = A (ve, v3), so that

[w,d] g = A(v2,v3) [[v1,v3] g [v2, d] p — [v1, 2] g [v3, d] ] (5)

for a vector d in F3. By direct substitution of w, we use the Generalised scalar triple product

theorem to obtain

[w,d] g = [(v1, (v2,v3) g) g, d] 5 = [[v2, 3] g, [d, v1] gl g = [v2, (v3,d,v1) gl 5 -

Similarly, based on the calculations of w previously, we have

[U2’ <U37 d7 U1>B]B = [U2a A (1)2,’[)3) ([Ula U3}B d— [U37d]B Ul)]B (6)

= A (d7 Ul) [[Ul’v?’]B [U27d]B - [Ula U2]B [’037 d]B] .

Comparing (5) and (6), we deduce that A (ve,v3) = A(d,v1) and conclude that A is indeed
independent of vy and wvs, in addition to v1. So, we substitute any choice of vectors v, v and v3 in
order to find A. With this, suppose that vy = (1,0,0) = e; and v; = v3 = (0,1,0) = e2. Then, using

the notation of the adjugate matrix in (2),

V2 XBU3 = <(17070)a(0’1’0)> ad.]B
a1 By B
= (ana 1) 53 (6] 51
By B1 a3
= (627617a3)



and hence

<'U1, '1)27 v3>B

Now use the fact that adj (adj B) =

ar B3 Bo
adj | B3 a2 f4
By Bp a3

so that

a1 By B
= ((0,1,0), (B, B1,3)) | B3 2
By B1 a3
ar Bz B
= (a3,0,=B) [ B3 2 By
B B1 a3
= (ala3 - 63, asfs — 515270) :
(det B) B to obtain
agaz — 1 B1fs — asfy P18 — asfs
= B1By —asfs  araz — 5% Bafz — a1fy
B1B3 — 2By Bofs — a1y Q1o — ﬂ?@
al b3 b2
= (detB) | b3 as b
bg b1 as

<’U1,’U2,’l)3>B = (det B) (ag, —b3,0).

Since by (1) we have [v1,v2] 5 = e1Bel = b3 and [v1,v3] g = eaBel = ay, it follows that

(det B) (a2, —bs,0)

(det B) [(Ul ‘B 213) er — (Ul ‘B Ug) 62]

(det B) [(1)1 ‘B 213) Vg — (2}1 ‘B 'UQ) '03} .

From this, we deduce that A = det B and hence

<’U1,’U2,’1)3>B = (det B) [(’Ul ‘B 1}3) Vo — (1}1 ‘B 1}2) 1}3]

as required. ®m

The B-vector product itself is not an associative operation, but by the anti-symmetric property of

B-vector products, we see that

The following result, attributed in the Euclidean case to Jacobi [16], connects the theory of B-vector

products to the theory of Lie algebras and links the three B-vector triple products which differ by an

<U1)U2)v3>B = - <U17 U37 UZ>B .

even permutation of the indices, hence generalising Jacobi’s result.

Theorem 6 (Generalised Jacobi identity) For vectors vi, ve and vs in the inner product space

F3 equipped with the B-scalar product, we have

<1)1,U2,113>B + <02,U3,01>B + <71377)177)2>B =0.



Proof. Apply the Generalised Lagrange’s formula to each of the three summands to get

(v1,v2,v3) p = (det B) [[v1, v3] g v2 — [v1, v2] g v3]
as well as
(v2,v3,v1) g = (det B) [[v1, v2] g v3 — [v2,v3] 5 V1]

and

<U3,U1,2}2>B = (det B) [[2}2,1}3}3 v — [Ul,vg]B UQ] .

Add the three summands to get the required result. m

3.3 Scalar quadruple products over general inner product spaces

Recall that the Euclidean scalar quadruple product of vectors vi, vs,v3 and vg in the inner
product space F? equipped with the usual Euclidean scalar product (from [11, pp. 75-76]) is defined

as

[v1, V23 v3, v4] = [(v1,v2) , (v3,v4)]

We will similarly define in the inner product space F? equipped with the B-scalar product the B-scalar
quadruple product to be the quantity

[U1,’02;113,U4]B = [(7)177)2>B ) <U37U4>B]B'

The following result, which originated from separate works of Binet [2] and Cauchy [4] in the case
of the Euclidean scalar quadruple products and also highlighted in [3] and [24, p. 29], allows us to

compute B-scalar quadruple products purely in terms of B-scalar products.

Theorem 7 (Generalised Binet-Cauchy identity) For vectors vi, va, vs and vs in the inner

product space F3 equipped with the B-scalar product, we have
[v1, v2;v3,v4] g = (det B) [[v1, vs] g [v2,va] g — [v1, va] p [V2, V3] ] -
Proof. Let w = (v1,v2) g, so that by the Generalised calar triple product theorem and Corollary 4,
[V1,v2; U3, V4] g = (W, v3,v4] g = [va, W, V3] 5.
By the Generalised Lagrange formula,
(w,v3) g = — (v3,v1,v2) g = (det B) [[v1,v3] g v2 — [va, v3] g v1]

and hence

[v1,v2;03,v4] g = ((det B) [[v1,v3]5v2 — [v2,v3] g v1]) - va

= (det B) [[v1,vs]g [v2, va] g — [v1, v4] g [v2, V3] ]
as required. m

10



An important special case of the Generalised Binet-Cauchy identity is another result of Lagrange
[19], which we now generalise to a general inner product space. We distinguish this from the Gener-
alised Lagrange formula, which computes the B-vector triple product of three vectors, by calling it

the Generalised Lagrange identity.

Theorem 8 (Lagrange’s identity) Given vectors vy and ve in the inner product space F3 equipped

with the B-scalar product, we have

Qs ((v1,v2)5) = (det B) | Qi (v1) Qi (v2) — o1, 2]

Proof. This immediately follows from the Generalised Binet-Cauchy identity by setting v; = v3 and
V2 = v4. N
Here is another consequence of the Generalised Binet-Cauchy identity, which is somewhat similar

to the Generalised Jacobi identity for B-vector triple products.

Corollary 9 For vectors vi, va, v3 and vy in the inner product space F3 equipped with the B-scalar
product, we have

[v1, V2; U3, V4] g + [V2,V3; V1, va] g + [V, V15 V2, v4] 5 = 0.

Proof. From the Generalised Binet-Cauchy identity, the three summands evaluate to

[v1, V2503, v4] g = (det B) [[v1,v3] g [v2, va] g — [v1,v4] g [V2, V3] 5]
as well as
[v2, v3;v1,v4] g = (det B) [[va, v1] g [v3, v4] g — [v2,v4] g [U3, V1] ]

and

[v3, V15 V2, v4] g = (det B) [[vs, va g [v1, va] g — [v3, va] g [V1, V2] ] -

Add the three summands to obtain the required result. m

3.4 Vector quadruple products over general inner product spaces

Recall that the Euclidean vector quadruple product of vectors vi, ve,vs and v4 in the inner
product space F? equipped with the usual Euclidean scalar product (from [11, pp. 76-77]) is the

vector

(v1,v2;v3,v4) = ((v1,02) , (v3,04)) -

Define similarly the B-vector quadruple product in the inner product space F? equipped with the

B-scalar product as

(v1,v9;v3,v4) p = ((v1,v2) 5, (U3, V4) ) 5 -

The key result here, generalising [11, p. 77] for a general inner product space, is given below.

Theorem 10 (Generalised vector quadruple product theorem) For vectors vy, ve, vs and vy

11



in the inner product space F> equipped with the B-scalar product, we have

(vi,v2;v3,v4) 5 = (det B) ([v1,v2,v4] g v3 — [V1, V2, V3] 5 Va)

= (det B) ([v1,v3,v4] g v2 — [v2,v3,v4] g V1) -
Proof. If u = (v1,v2) 5, then use the Generalised Lagrange formula to get
(v1,v2;U3,v4) g = (U, v3,v4) g = (det B) [[u, v4] g v3 — [u, v3] 5 va] .
From the Generalised scalar triple product theorem,

[u,v3] p = [v1,v2,v3]p  and  [u,v4]g = [v1, V2, 4] 5.

Therefore,

(v1,v2;v3,v4) g = (det B) [[v1,v2, va] g v3 — [v1, V2, V3] g va] -

Since

(v1,v2;v3,04) g = — (U3, V4; V1, V2) g = (V3 X B V4) XB (V2 XB V1)

Corollary 4 gives us

(v1,v2;03,v4) p = (det B) ([v3,v4, v1] 5 v2 — [U3, V4, V2] g V1)

= (det B) ([v1,v3, va] g v2 — [v2,v3,v4] g V1)

which completes the proof. m
As a corollary, we find a relation satisfied by any four vectors in three-dimensional vector space,

extending the result in [11, p. 76] to a general inner product space.

Corollary 11 Suppose that v1, ve, v3 and v4 are vectors in the inner product space F3 equipped with

the B-scalar product. Then,

[V2, V3, V4] g U1 — [V1, V3, V4] g V2 + [V1,V2,v4] p U3 — [V1, V2, V3] g Vg = O.

Proof. This is an immediate consequence of equating the two formulations of the Generalised vector
quadruple product theorem, after cancelling the non-zero factor det B. =

The following result, stated and proven in [21, p. 109] for an inner product space equipped with
the Euclidean scalar product, allows us to compute the product of two B-scalar triple products. The

proof will rely on the above corollary.

Theorem 12 Take siz vectors v1, va, U3, w1, Wy and ws in the inner product space F3 equipped with

the B-scalar product, and let

[vi,wi]p [v1,walp [v1,ws]p
Gp = | [va,w1]p [vo,w2]p [va,w3]p

[v3,w1]p [vs,wa]p [vs,w3]p

12



Then,

[v1,v2, V3] g (w1, wa, w3z = (det B) (det Gg) .

Proof. Let a = (w1, ws) 5, so that by applying Corollary 11 on the vectors vy, ve, v3 and a,
[v2,v3,al g v1 — [v1,v3,a] g v2 + [v1,V2,a] g v3 — [V1,v2, V3] pa = 0.
From Corollary 4 and the Generalised Binet-Cauchy identity, we get
[v2,v3,al g = [w1, wa; v, vs] g = (det B) [[w, va] g [w2, vs] g — w1, vs] g [w2, v2] ]
and similarly
[v1,v3,al g = (det B) [[w, v1] g [wa, v3] g — [w1, v3]  [wa, v1] g]

and

[v1,v2,alg = (det B) [[w1, v1] g [we, vo] g — [w1, va] g [w2, v2] ] -

Rewriting (7) as
[v1,v2, 3] g a = [v2,v3,a] g v1 — [v1, V3, 0] V2 + [V1,V2,a] 5 V3

substitute the above three computed quantities to get

[v1,v2,v3]ga = ((det B) [[w1,va] g [wa,v3] 5 — (w1, v3] g [wa, v2] 5]) 11
— ((det B) [[w1, v1] g [wa, v3] g — [w1, v3] g [wa, v1] g]) v2
+ ((det B) [[w1, v1] g [wa, vo] g — [w1, va] g [w2, v2] g]) v3

and take the dot product of each side with ws, using Corollary 4 again, to get

[[vi,v2,v3]ga, w3l = [v1,v2,v3]5 [w1, w2, ws]p

(w1, v2] g (w2, v3] g w3, v1] g — [w1, V3] g [wa, va] g [w3, V1]

= (det B) | —[wi,v1]g w2, vs]g (w3, vo] g + (w1, vs] g [wa, v1] g (w3, v2] 5
+ [w1, v1] g [we, vo] g (w3, v3] p — w1, v2] g (w2, va] g [ws, v3] 5
[Ul,wl]g [U }B [U17w3 B
[
[

]
= (det B) |[va,w1]p [v2, wa]p [v2,w3]p
[vs, wilp  [vs,walp (v, wslp
= (det B) (detGp)

as required. m

In the proof of the above theorem, we may write Gg = M BN where

U1 w1
M= vy and N = | ws
U3 w3

13



so that we have
[v1, V2, v3] 5 [w1, W, w3] 5 = (det B)? (det M) (det N).

As another consequence, we get an expression for the meet of two distinct two-dimensional sub-

spaces.

Corollary 13 IfU = span (v1,v2) and V = span (vs,v4) are distinct two-dimensional subspaces of F3

then (v1,vg;v3,v4) g spans UNV.

Proof. Clearly v is both in U and in V' from the Generalised vector quadruple product theorem. We
need only show that it is non-zero but this follows from the statement of the aforementioned result,
since by assumption v3 and vy are linearly independent and at least one of [v1, v2, v4] g and [v1, v2,v3] 5
must be non-zero since otherwise both v4 and wvs lie in U, which contradicts the assumption that the
U and V are distinct. m

A special case occurs when each of the factors of the B-quadruple vector product contains a

common vector. This extends the result in [11, p. 80] to a general metrical framework.

Corollary 14 If vy, va and vz are vectors in the inner product space F3 equipped with the B-scalar

product, then

(v1,v2;v1,v3) g = (det B) [v1, v2,v3] 5 v1.

Proof. This follows from

(v1,v2;v1,v3) g = (det B) ([v1,v2,v3] g v1 — [v1, v2,v1] g v3)

together with the fact that [vi,ve,v1]5 =0. =

Yet another consequence is given below, which was alluded to [11, p. 86] in for the Euclidean case.

Theorem 15 For vectors vi,va and vs in the inner product space F® equipped with the B-scalar

product,

[(va,v3) 5, (v3,v1) ., (U1,v2) gl g = (det B) ([vr, va, v 5)°.

Proof. From Corollary 14,

[(v2,v3) g, (vs,01) g (1, v2) gy = = [{v2,v8) g, (01, 08) g 5 V1, v2) ) ]
= —[(v2,v3)p, (det B) [v1,v3, V2] 5 1]
= (det B) ([v1,v2,v3]3)2

as required. m

It follows that if v1, vy and v3 are linearly independent, then so are (vq,v2) g, (v2, v3) 5 and (vs, v1) 5.
This also suggests that there is a kind of duality here, which we can clarify by the following result,
which is a generalization of Exercise 8 of [21, p. 116] to a general inner product space; it will contain

four parts.

14



Theorem 16 Suppose that vi,vy and vs are linearly independent vectors in V3, so that [v1, V2, 03] 5

18 non-zero. Define

_ (v,u3)p L= UV g, = (U t2)B
[v1,v2,v3] 5 [v1,v2,v3] g [v1,v2,v3] g

Then, we have that

a)

(v1,w1) g + (v2,w2) g + (v3, w3)p = 0
b)

[v1,w1] g + [v2, wa] g + [V3, W3] 5 =3
c)

[v1,v2,v3] g [wi, wa, w3] g = det B
d)
oy — (w2, ws)p = (ws, wi)p 4 vy — (w1, w2)
[’U}]_,’U)Q,’LUg]B [w17w25w3]B [U}]_,U)Q,’U]:}]B

Proof. By the Generalised Jacobi identity,

(v1,w1) g + (v2,wa) g + (v3,w3) g

1
- m (<U1,U2,'1}3>B + <'U2,'l)3,'l)1>B + <'U3,'l)1,'l]2>B)
b ) B

= 0.
Moreover, we use the definition of the B-scalar triple product to obtain

[v1,w1]g + [v2, wa] g + [v3, W3]

1
— m([vl7v27v3]3+[U27v37vl]B+[U3)vlyv2]B)
s V2, B

= 3.
By Theorem 15,

(v2,v3) g (vs,v1)p  (vi,v2)p
[v1,v2,v3] 5" [v1,v2,03]5 " [v1,v2,03]5 | 5
1

= [73[<027U3>B7<U37U1>B’<U1=U2>B]B
U17U2av3}B

1
— m(detB) ([Ul,U27U3]B)2
’ I B

det B

[U17U2a U3}B

[w17w27w3]3 -

and hence

[v1,v2, V3] g w1, w2, w3] g = det B.
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Given this result, we then have

(wnyws)y = <[<’U37U1>B (v1,v2) p >B

vly '1)2, 'U3]B7 [Ula 027 v3]B

1
= ————— (v1,v3;01,v2) 5
[1)17,027,03]3

which by Corollary 13 becomes

1
(wa, w3) g = ——— 5 (det B) [v1, v3, v2] g V1.

[’Ul, V2, U3]B

By the Generalised scalar triple product theorem,

<7~U2,1U3>B = [ (detB) U1

U1, V2, U3]B

and by the previous result in this theorem, which has been already proven,
(w2, w3) g = [w1, w2, ws]gv1.

Thus
<w2 ) w3>B

- (w1, wa, w3 g
and the results for v9 and v3 are similar. m

Parts a) and d) of this result also proven in [11, p. 86] for an inner product space equipped with the
Euclidean scalar product; furthermore, we see that part c¢) of this result is a special case of Theorem
12, where the vectors wi, we and ws are dependent on vy, vo and w3z through the use of B-vector

products.

4 Scope of applications

The use of vector products has been prevalent in understanding more advanced ideas in geometry,
notably in relativistic geometry. Here, a Minkowski scalar product [20] in F3, given for vectors

v = (v1,v2,v3) and w = (w1, we, ws) by
VW = VW1 + VaWy — V3Ws3
can be represented by the symmetric bilinear form with matrix representation

0
0

W

Il
S O =
o = O

—1

Fuclidean geometry and relativistic geometry, among many other non-Euclidean geometries, can be
unified through Klein’s Erlangen program (see [17] and [18]) by organising geometry in terms of

projective geometry, a less restrictive form of affine geometry, over a general symmetric bilinear form
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as described above. Some form of this treatment is also given in [22] and [23].

Coordinate-free approaches may also exist, which can generalise the ideas of the vector product

over a general inner product space to arbitrary dimensions. This may be explored in a future paper

by the author, where the works of [8] and [15] in the field of geometric algebra will be crucial in such

a setup. The vector product is closely linked to the idea of Hodge star operators in geometric algebra;

seen in [9, p. 15], this study would be a desirable first step in generalising the vector product over a

general inner product space to coordinate-free approaches.

5
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